Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.983
Filter
1.
Clin Chim Acta ; : 117887, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643818

ABSTRACT

A crucial step in the design of a diagnostic test is determining the cutoff point, the threshold which separates a negative measurement from a positive one. The results of a diagnostic test have clinical consequences: only when disease is accurately detected, proper treatments be administered, and vice versa. Benefit-Risk (BR) analysis should be used to determine the optimal cutoff point that optimizes the consequence. Quantitative BR analysis requires measurable benefit and risk and a function, e.g., linear or ratio, to combine all the components. When BR corresponding to the four possible diagnostic test outcomes are all scaled in units of risk resulting from an untreated disease, we propose a net BR (linear BR) equation as a function of diagnostic parameters, disease prevalence, benefit of correct diagnosis and risk of false diagnostic results. Optimal cutoff of a diagnostic test can be obtained using this function. Comparison of diagnostic tests based on their benefit and risk of tests is also discussed. Use of this function is illustrated with a biosensor rapid antigen test for SARS-CoV-2.

2.
BMC Genomics ; 25(1): 328, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566015

ABSTRACT

BACKGROUND: Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS: Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION: Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.


Subject(s)
Quercus , Retroelements , Quercus/genetics , Genome, Plant , Karyotype , Terminal Repeat Sequences/genetics , Evolution, Molecular , Phylogeny
3.
Ann Appl Stat ; 18(1): 487-505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38577266

ABSTRACT

Many genetic studies contain rich information on longitudinal phenotypes that require powerful analytical tools for optimal analysis. Genetic analysis of longitudinal data that incorporates temporal variation is important for understanding the genetic architecture and biological variation of complex diseases. Most of the existing methods assume that the contribution of genetic variants is constant over time and fail to capture the dynamic pattern of disease progression. However, the relative influence of genetic variants on complex traits fluctuates over time. In this study, we propose a retrospective varying coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on longitudinal binary traits. We model dynamic genetic effect using smoothing splines, estimate model parameters by maximizing a double penalized quasi-likelihood function, design a joint test using a Cauchy combination method, and evaluate statistical significance via a retrospective approach to achieve robustness to model misspecification. Through simulations we illustrated that the retrospective varying-coefficient test was robust to model misspecification under different ascertainment schemes and gained power over the association methods assuming constant genetic effect. We applied RVMMAT to a genome-wide association analysis of longitudinal measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Pathway analysis identified two important pathways related to G-protein signaling and DNA damage. Our results demonstrated that RVMMAT could detect biologically relevant loci and pathways in a genome scan and provided insight into the genetic architecture of hypertension.

4.
Structure ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38657613

ABSTRACT

Accurate protein side-chain modeling is crucial for protein folding and design. This is particularly true for molecular docking as ligands primarily interact with side chains. In this study, we introduce a two-stage side-chain modeling approach called OPUS-Rota5. It leverages a modified 3D-Unet to capture the local environmental features, including ligand information of each residue, and then employs the RotaFormer module to aggregate various types of features. Evaluation on three test sets, including recently released targets from CAMEO and CASP15, shows that OPUS-Rota5 significantly outperforms some other leading side-chain modeling methods. We also employ OPUS-Rota5 to refine the side chains of 25 G protein-coupled receptor targets predicted by AlphaFold2 and achieve a significantly improved success rate in a subsequent "back" docking of their natural ligands. Therefore, OPUS-Rota5 is a useful and effective tool for molecular docking, particularly for targets with relatively accurate predicted backbones but not side chains such as high-homology targets.

5.
Pest Manag Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661024

ABSTRACT

BACKGROUND: Piriformospora indica is an endophytic fungus that can promote the growth and confer the resistance against diverse stresses in host plants by root colonization. However, the effects of P. indica colonization on improving plant resistance to insect pests are still less explored. The brown planthopper (BPH) Nilaparvata lugens is a serious monophagous pest that causes extensive damage to rice plants. Here, we aimed to evaluate the effects of P. indica colonization on rice resistance against BPH. RESULTS: The colonization of P. indica in the rice roots resisted the damage from BPH. The age-stage, two-sex life table analyses showed that feeding on P. indica-colonized rice plants affected BPH's female adult longevity, oviposition period, fecundity, population parameters and population size. BPH female adults feeding on P. indica-colonized plants excreted less honeydew. P. indica colonization remarkably increased the duration of np, N2, and N3 waveform, as well as the occurrences of N1 and N2, and decreased the duration of N4-b for BPH on rice plants. Meanwhile, the weight of BPH on the colonized plants was significantly lower than the control. In addition, the feeding and oviposition preferences of BPH to P. indica-colonized plants were reduced. qRT-RCR analyses revealed that P. indica colonization induced the expressions of jasmonic acid (JA)- and salicylic acid (SA)-related genes in rice plants. CONCLUSION: P. indica colonization can reduce BPH performance on rice plants with potentially inhibitory effects on population growth. Collectively, these results support the potential for endophytically colonized P. indica as an effective strategy to improve insect resistance of crops. This article is protected by copyright. All rights reserved.

6.
High Alt Med Biol ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38647652

ABSTRACT

Li, Xiaoxu, Zhijun Pu, Gang Xu, Yidong Yang, Yu Cui, Xiaoying Zhou, Chenyuan Wang, Zhifeng Zhong, Simin Zhou, Jun Yin, Fabo Shan, Chengzhong Yang, Li Jiao, Dewei Chen, and Jian Huang. Hypoxia-induced myocardial hypertrophy companies with apoptosis enhancement and p38-MAPK pathway activation. High Alt Med Biol. 00:00-00, 2024. Background: Right ventricular function and remodeling are closely associated with symptom severity and patient survival in hypoxic pulmonary hypertension. However, the detailed molecular mechanisms underlying hypoxia-induced myocardial hypertrophy remain unclear. Methods: In Sprague-Dawley rats, hemodynamics were assessed under both normoxia and hypobaric hypoxia at intervals of 7 (H7), 14 (H14), and 28 (H28) days. Morphological changes in myocardial tissue were examined using hematoxylin and eosin (HE) staining, while myocardial hypertrophy was evaluated with wheat germ agglutinin (WGA) staining. Apoptosis was determined through TUNEL assays. To further understand the mechanism of myocardial hypertrophy, RNA sequencing was conducted, with findings validated via Western blot analysis. Results: The study demonstrated increased hypoxic pulmonary hypertension and improved right ventricular diastolic and systolic function in the rat models. Significant elevations in pulmonary arterial systolic pressure (PASP), mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP), and the absolute value of +dp/dtmax were observed in the H14 and H28 groups compared with controls. In addition, right ventricular systolic pressure (RVSP), -dp/dtmax, and the mean dp/dt during isovolumetric relaxation period were notably higher in the H28 group. Heart rate increased in the H14 group, whereas the time constant of right ventricular isovolumic relaxation (tau) was reduced in both H14 and H28 groups. Both the right heart hypertrophy index and the heart weight/body weight ratio (HW/BW) were elevated in the H14 and H28 groups. Myocardial cell cross-sectional area also increased, as shown by HE and WGA staining. Western blot results revealed upregulated HIF-1α levels and enhanced HIF-2α expression in the H7 group. In addition, phosphorylation of p38 and c-fos was augmented in the H28 group. The H28 group showed elevated levels of Cytochrome C (Cyto C), whereas the H14 and H28 groups exhibited increased levels of Cleaved Caspase-3 and the Bax/Bcl-2 ratio. TUNEL analysis revealed a rise in apoptosis with the extension of hypoxia duration in the right ventricle. Conclusions: The study established a link between apoptosis and p38-MAPK pathway activation in hypoxia-induced myocardial hypertrophy, suggesting their significant roles in this pathological process.

7.
Article in English | MEDLINE | ID: mdl-38652239

ABSTRACT

BACKGROUND: Hypoglycemic pharmacotherapy interventions for alleviating the risk of dementia remains controversial, particularly about dipeptidyl peptidase 4 (DPP4) inhibitors versus metformin. Our objective was to investigate whether the initiation of DPP4 inhibitors, as opposed to metformin, was linked to a reduced risk of dementia. METHODS: We included individuals with type 2 diabetes over 40 years old who were new users of DPP4 inhibitors or metformin in the Chinese Renal Disease Data System (CRDS) database between 2009 and 2020. The study employed Kaplan-Meier and Cox regression for survival analysis and the Fine and Gray model for the competing risk of death. RESULTS: Following a 1:1 propensity score matching, the analysis included 3626 DPP4 inhibitor new users and an equal number of metformin new users. After adjusting for potential confounders, the utilization of DPP4 inhibitors was associated with a decreased risk of all-cause dementia compared to metformin (hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.45-0.89). Subgroup analysis revealed that the utilization of DPP4 inhibitors was associated with a reduced incidence of dementia in individuals who initiated drug therapy at the age of 60 years or older (HR 0.69, 95% CI 0.48-0.98), those without baseline macrovascular complications (HR 0.62, 95% CI 0.41-0.96), and those without baseline microvascular complications (HR 0.67, 95% CI 0.47-0.98). CONCLUSION: In this real-world study, we found that DPP4 inhibitors presented an association with a lower risk of dementia in individuals with type 2 diabetes than metformin, particularly in older people and those without diabetes-related comorbidities.

8.
Endosc Int Open ; 12(4): E513-E519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628387

ABSTRACT

Background and study aims Symptomatic simple hepatic cysts require treatment, with several guidelines recommending laparoscopic deroofing. However, cysts located in the posterosuperior segments are considered poor candidates for this procedure. Gastrointestinal endoscopes are more flexible and able to reach less accessible areas than laparoscopes. This study aimed to evaluate the utility of endoscopic transgastric hepatic cyst deroofing (ETGHCD) for treatment of simple hepatic cysts. Patients and methods Seven patients with simple hepatic cysts were evaluated between June 2021 and October 2023. The success rate, procedure time, post-procedure length of hospital stays, complications, pathologic diagnosis, and efficacy were recorded. Results Eleven cysts in seven patients (5 men; mean age 65.5 (standard deviation [SD] 8.5) years) were successfully treated without any complications. The mean procedure time was 65.6 minutes (SD 17.2). Mean post-procedure hospitalization was 4.4 days (SD 1.0). The pathologic diagnosis of 11 cysts showed simple hepatic cysts. The size of the cysts was significantly decreased from 337.0 cm 3 (SD 528.8) to 5.2 cm 3 (SD 6.3) 1 month after ETGHCD. During the median 12.7-month follow-up in seven patients, the cysts showed a 99.6% reduction with no recurrence. Conclusions ETGHCD provided a feasible, safe, effective, and minimal invasive alternative approach for the treatment of simple hepatic cysts.

9.
BMC Genomics ; 25(1): 379, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632516

ABSTRACT

BACKGROUND: Tumor cells exhibit a heightened susceptibility to lysosomal-dependent cell death (LCD) compared to normal cells. However, the role of LCD-related genes (LCD-RGs) in Osteosarcoma (OS) remains unelucidated. This study aimed to elucidate the role of LCD-RGs and their mechanisms in OS using several existing OS related datasets, including TCGA-OS, GSE16088, GSE14359, GSE21257 and GSE162454. RESULTS: Analysis identified a total of 8,629 DEGs1, 2,777 DEGs2 and 21 intersection genes. Importantly, two biomarkers (ATP6V0D1 and HDAC6) linked to OS prognosis were identified to establish the prognostic model. Significant differences in risk scores for OS survival were observed between high and low-risk cohorts. Additionally, scores of dendritic cells (DC), immature DCs and γδT cells differed significantly between the two risk cohorts. Cell annotations from GSE162454 encompassed eight types (myeloid cells, osteoblastic OS cells and plasma cells). ATP6V0D1 was found to be significantly over-expressed in myeloid cells and osteoclasts, while HDAC6 was under-expressed across all cell types. Moreover, single-cell trajectory mapping revealed that myeloid cells and osteoclasts differentiated first, underscoring their pivotal role in patients with OS. Furthermore, ATP6V0D1 expression progressively decreased with time. CONCLUSIONS: A new prognostic model for OS, associated with LCD-RGs, was developed and validated, offering a fresh perspective for exploring the association between LCD and OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Prognosis , Sequence Analysis, RNA , Cell Death , Lysosomes , RNA
10.
Bioresour Bioprocess ; 11(1): 26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38647789

ABSTRACT

The use of enzymes to catalyze Henry reaction has advantages of mild reaction conditions and low contamination, but low enzyme activity of promiscuous catalysis limits its application. Here, rational design was first performed to identify the key amino acid residues in Henry reaction catalyzed by Lactococcal multidrug resistance Regulator (LmrR). Further, non-canonical amino acids were introduced into LmrR, successfully obtaining variants that enhanced the catalytic activity of LmrR. The best variant, V15CNF, showed a 184% increase in enzyme activity compared to the wild type, and was 1.92 times more effective than the optimal natural amino acid variant, V15F. Additionally, this variant had a broad substrate spectrum, capable of catalyzing reactions between various aromatic aldehydes and nitromethane, with product yielded ranging from 55 to 99%. This study improved enzymatic catalytic activity by enhancing affinity between the enzyme and substrates, while breaking limited types of natural amino acid residues by introducing non-canonical amino acids into the enzyme, providing strategies for molecular modifications.

11.
J Environ Manage ; 358: 120837, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593737

ABSTRACT

The virus that infects bacteria known as phage, plays a crucial role in the biogeochemical cycling of nutrients. However, the community structure and potential functions of phages in silage fermentation remain largely unexplored. In this study, we utilized viral metagenomics (viromics) to investigate the types, lifestyles, functions, and nutrient utilization patterns of phages in silage. Our findings indicated a high prevalence of annotated phages belonging to Caudovirales and Geplafuvirales, as well as unclassified phages in silage. The predominant host types for these phages were Campylobacterales and Enterobacterales. Virulent phages dominated the silage environment due to their broader range of hosts and enhanced survival capabilities. All identified phages present in silage were found to be non-pathogenic. Although temperate and virulent phages carried distinct genes associated with nutrient cycling processes, the shared genes (prsA) involved in carbon metabolism underscore the potential significance of phages in regulating carbon metabolism in silage. Overall, our findings provide a valuable foundation for further exploring the complex interactions between phages and microorganisms in regulating silage fermentation quality.

12.
Cell Biochem Biophys ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619643

ABSTRACT

Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.

13.
Eur J Clin Invest ; : e14233, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666585

ABSTRACT

BACKGROUND: Studies on the predictive ability of disease-specific health quality of life (QoL) in patients with heart failure (HF) have produced conflicting results. To address these gaps in knowledge, we conducted a meta-analysis to evaluate the predictive value of QoL measured by the Kansas City Cardiomyopathy Questionnaire (KCCQ) in patients with HF. MATERIALS AND METHODS: We searched PubMed, and Embase databases to identify studies investigating the predictive utility of baseline QoL measured by the KCCQ in HF patients. The outcome measures were all-cause mortality and HF hospitalisation. The predictive value of QoL was expressed by pooling the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the bottom versus the top category of KCCQ score or for per 10-point KCCQ score decrease. RESULTS: Twelve studies reporting on 11 articles with a total of 34,927 HF patients were identified. Comparison of the bottom with the top KCCQ score, the pooled adjusted HR was 2.34 (95% CI 2.10-2.60) and 2.53 (95% CI 2.23-2.88) for all-cause mortality and HF hospitalisation, respectively. Additionally, a 10-point decrease in KCCQ score was associated with a 12% (95% CI 7%-16%) increased risk of all-cause mortality and a 14% (95% CI 13%-15%) increased risk of HF hospitalisation. CONCLUSIONS: Poor health-related QoL as determined by the lower KCCQ score, was associated with an increased risk of all-cause mortality and HF hospitalisation in patients with HF. Measuring disease-specific health-related QoL using the KCCQ score may provide valuable predictive information for HF patients.

14.
BMC Plant Biol ; 24(1): 168, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438905

ABSTRACT

BACKGROUND: Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS: A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS: A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.


Subject(s)
Ecosystem , Quercus , Quercus/genetics , Phylogeography , Forests , Climate Change
15.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448429

ABSTRACT

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

16.
J Med Chem ; 67(5): 3843-3859, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442035

ABSTRACT

To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Naphthalenes , Neoplasms , Thiosemicarbazones , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/chemistry , Iridium/pharmacology , Iridium/chemistry , Precision Medicine , Necroptosis , Neoplasms/drug therapy , Mitochondria , Coordination Complexes/chemistry , Cell Line, Tumor
17.
J Surg Res ; 297: 63-70, 2024 May.
Article in English | MEDLINE | ID: mdl-38447337

ABSTRACT

INTRODUCTION: Diabetic foot ulcer (DFU) is a severe complication that threatens the daily lives of patients with diabetes and represents a serious challenge to the global health system. Considering that impaired wound healing is the leading cause of DFU, exploring the mechanism of diabetic wound healing is beneficial for improving DFU treatment. Resveratrol (RES) is a native polyphenol with various pharmacological characteristics, and recent studies have indicated an accelerated function of RES in diabetic wound healing. As human dermal fibroblasts (HDFs) play a significant role in diabetic wound healing, this study aimed to elucidate the regulatory mechanism of RES in HDFs. METHODS: To mimic diabetic wound healing in vitro, the HDFs were stimulated with high glucose (HG). Our findings revealed that RES reversed HG-induced suppression of HDF proliferation and migration caused by HG. RES inhibits the Notch signaling pathway. More importantly, we demonstrated that the activation of the Notch pathway abrogated the effects of RES on HG-induced HDFs. RESULTS: In vivo assays also illustrated that RES contributed to wound healing in diabetic mice by blocking the Notch pathway. CONCLUSIONS: In conclusion, RES improved diabetic wound healing by targeting the Notch pathway, which offers novel insights into DFU therapy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Humans , Mice , Animals , Resveratrol/pharmacology , Diabetes Mellitus, Experimental/metabolism , Wound Healing , Skin/metabolism
18.
Adv Mater ; : e2401234, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520380

ABSTRACT

Eutectic gallium-indium liquid metal (EGaIn-LM), with a considerable capacity and unique self-healing properties derived from its intrinsic liquid nature, gains tremendous attention for lithium-ion batteries (LIBs) anode. However, the fluidity of the LM can trigger continuous consumption of the electrolyte, and its liquid-solid transition during the lithiation/de-lithiation process may result in the rupture of the solid electrolyte interface (SEI). Herein, LM is employed as an initiator to in situ assemble the 3D hydrogel for dynamically encapsulating itself; the LM nanoparticles can be homogeneously confined within the hydrogel-derived carbon framework (HDC) after calcination. Such design effectively alleviates the volume expansion of LM and facilitates electron transportation, resulting in a superior rate capability and long-term cyclability. Further, the "dual-layer" SEI structure and its key components, including the robust LiF outer layer and corrosion-resistant and ionic conductive LiGaOx inner layer are revealed, confirming the involvement of LM in the formation of SEI, as well as the important role of carbon framework in reducing interfacial side reactions and SEI decomposition. This work provides a distinct perspective for the formation, structural evolution, and composition of SEI at the liquid/solid interface, and demonstrates an effective strategy to construct a reliable matrix for stabilizing the SEI.

19.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38553427

ABSTRACT

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Thiosemicarbazones , Humans , Serum Albumin, Human/chemistry , Copper/chemistry , Serum Albumin/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Indomethacin/therapeutic use , Tumor Microenvironment , Prodrugs/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
20.
Nat Aging ; 4(3): 396-413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38503993

ABSTRACT

Adrenal glands, vital for steroid secretion and the regulation of metabolism, stress responses and immune activation, experience age-related decline, impacting systemic health. However, the regulatory mechanisms underlying adrenal aging remain largely uninvestigated. Here we established a single-nucleus transcriptomic atlas of both young and aged primate suprarenal glands, identifying lipid metabolism and steroidogenic pathways as core processes impacted by aging. We found dysregulation in centripetal adrenocortical differentiation in aged adrenal tissues and cells in the zona reticularis region, responsible for producing dehydroepiandrosterone sulfate (DHEA-S), were highly susceptible to aging, reflected by senescence, exhaustion and disturbed hormone production. Remarkably, LDLR was downregulated in all cell types of the outer cortex, and its targeted inactivation in human adrenal cells compromised cholesterol uptake and secretion of dehydroepiandrosterone sulfate, as observed in aged primate adrenal glands. Our study provides crucial insights into endocrine physiology, holding therapeutic promise for addressing aging-related adrenal insufficiency and delaying systemic aging.


Subject(s)
Adrenal Glands , Aging , Animals , Humans , Aged , Dehydroepiandrosterone Sulfate/metabolism , Adrenal Glands/metabolism , Aging/genetics , Zona Reticularis , Primates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...